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Variational equations and symmetries in the Lagrangian
formalism
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Department of Theoretical Physics, Institute of Atomic Physics, Bucharest-Migurele, PO Box
MG 6, Romania -

Received 22 November 1994

Absiract. Symmetries in the Lagrangian formalism of arbitrary order are analysed with the help
of the so-called Anderson—Duchamp--Krupka equations. For the case of second-order equations
and a scalar field we establish a polynomial structure in the second-order derivatives. This
structure can be nsed to clarify the form of a general symmetry, As an illustration we analyse
the case of Lagrangian equations with Poincaré invariance or with universal invariance.

1. Introduction

The study of classical field theory in the framework of the Lagrangian formalism is still
a subject of active research, For first-order Lagrangian systems one usually prefers the
use of the Poincaré-Cartan form or related geometrical objects (see for instance [1,2]). For
higher-order Lagrangian systems it is difficult to find a proper generalization of the Poincaré—
Cartan form with the same properties as the first-order case. It is particulary difficult to find
such a generalization having a nice behaviour with respect to the (Noetherian) symmetries.
A way out is to use a related formalism based on the Euler-Lagrange operator and its
intrinsic characterization by Helmholtz equations. In fact, it was noticed sometimes ago
that, in the case of second-order differential equations describing a system with a finite
number of degrees of freedom, one can give necessary and sufficient conditions such that
the equations follow from a Lagrangian: they are the so-called Helmholtz equations (see [3]
for a complete bibliography on this problem). Remarkably, this result can be extended to
the general case of classical field theory and to equations of arbitrary order, leading to the
so-called Anderson-Duchamp-Krupka (ADK) equations [4, 5], which seem to be less well
known in the physics literature. The proper framework for this formalism is based on the
jet-bundle structures,

The purpose of this paper is to prove that this formalism based on the ADK equations
can be used to treat higher-order Lagrangian systems with groups of symmetries completely.

Section 2 has the purpose of presenting the formalism. For the sake of completeness
we will also sketch the derivations of the ADK equations. Section 3 is dedicated to an
extensive study of second-corder Lagrangian equations. In the case of a scalar field one can
praciically ‘soilve’ the ADK equations establishing a polynomial structure in the second-order
derivatives. This central result greatly simplifies the study of (Noetherian) symmetries.

In section 4 we impose, in addition, invariance with respect to some symmetry group.
Combining this with the result from section 3 one can completely analyse some interesting
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symmetry groups such as the Poincaré invariance and the so-called universal invariance [6].
Section 5 is dedicated to some final comments.

2. A higher-order Lagrangian formalism

2.1

The kinematical structure of classical field theory is based on a fibred bundle structure
w8 = M where § and M are differentiable manifolds of dimensions dim(M) =
n,dim(S) = N +n and x is the canonical projection of the fibration. Usually M is
interpreted as the ‘spacetime’ manifold and the fibres of § as the field variables. Next, one
considers the k-jet bundle J¥(S) = M (k = 0,..., p). By convention J2(5) = S and
p € NU {o0}.

One must usually take p € N but sufficiently large such that all formulae make sense.
Let us consider a local system of coordinates in the chat U C §: x*) (u=1,...,7n).

Then on some chart V € ' (U) C § we take a local coordinate system adapted to
the fibration structure: (x*,¢¥4) (# = 1,...,n,A = 1,..., N) such that the canonical
projection is w(x#, ¥4) = (x#).

Then one can extend this system of coordinates to J*(S) for any & < p:

(x”,%b“',!b}f,---sﬂfﬁl mu_k) 1$H1~<\"'Mk<n-

If w1, ..., py are arbitrary, then by {1, ..., i1} we understand the operation of increasing
ordering; then the notation \b'{‘;‘nu_” pyy Obviously makes sense.

2.2,

Let us consider s < p and T a (n + 1)-form which can be written in the local coordinates
introduced above as

T=Tady? Adx! Ao A dx® 2.1)

.....

Then T can be globally defined. Indeed, if we make a change of charts adapted to the
fibre bundle structure:

POk, Y)Y = (F*(x), FA(x, ¥)) (2.2)

then in the new coordinates T has the same structure (2.1) as above. In fact, one immediately
obtains
af*\ aFE ;
’I;{ = det (ﬁ) W% og (2.3)
where ¢ is the lift of ¢ to J5(S).
We call such a T a differential equation of order s.

2.3.

To introduce some special type of differential equations we need some very useful notation
[4]. We define the differential operators:

aﬁ,, ,,,,, u,_:."l!...rg! ] (24)
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for any ! = 0,...,k. Here r; is the number of times the index i appears in the
sequence {t1,..., ;. The combinatorial factor in (2.4) avoids possible overcounting in
the computations which will appear in the following. One then has

1
aj;’ ..... g B y = uaﬂperm (3#-) V=0
and
aﬁ'l ----- Hi UB;..-..”.,. =) {1 +# m)

where by perm(A) we mean the permanent of the matrix A.
Next, we define the total derivative operators:

3
Du= 0+ Vi sdi @5)
120
One can check that
Dyl = %l (2.6}
Dy, Du] =0. @.7)
Finally we define the differential operators ’
Dyyyeps = Dy o Dy (2.8)

Because of (2.7} the order of the factors on the right-hand side is irrelevant.

2.4,

A differential equation T is called locally variational (or of the Euler-Lagrange type) iff
there exists a local real function £ such that the functions 74 from (2.1) are of the form:

En(L) = Z(—l)’ etz ORHL). @9)
One calls £ a local Lagrangzan and

L=Ldx' A--- dx” (2.10)

a local Lagrange form. Let us note that L can be globally defined if we admit that at the
change of charts (2.2) £ changes:

£’=det(afu)[,oq3. (2.11)
oxV

If the differential equation T is constructed as above then we denote it by E(L). A
local Lagrangian is called a total divergence if it is of the form:

L=D,V* (2.12)
One can check that in this case we have
E(L)y=0. £2.13)

This property follows easily from

[a4~*, D,] = Za*’«a“ ----- Hivet (Y1 2 0). (2.14)
i=1 ’
The converse of this statement is true if one works on J°(8) (see [7]). It is not known
whether this is true on J{ (S) with p finite, A local Lagrangian verifying (2.13) is called
trivial.
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2.5,

Now we come to the central result from [4, 5].

Theorem 1. Let T be a differential equation of order s. Then T is locally variational iff the
functions T4 from (2.1) verify the following equations:

3
R Ty =3 1Dy 85T A=0,0,5). @15)
p=!

Remark I. These are the so-called Anderson-Duchamp—Krupka equations. For n = 1 and
5 =2 one obtains the well known Helmholtz equations.

Sketch of the progf. [4] We remind the reader that we are working on J7(S) with p
sufficiently large.

=
Suppose that £ is a local Lagrangian depending on (x*, ¥4, ¥, ..., ¥2
2r = 5.

Then we must show that T4 = £4(L) verify the ADK equations. The idea is as follows.
Let y* (A= 1,..., N) be some x-dependent functions and

a!}.A
A -

""" ur=m (Vl=0,.-n-,2r).

We define (locally) the vector field ¥ by

One proves by direct computations that
Ly(L) =iyE(L)+ Lo.

Here Ly and iy are the standard operations of Lie derivative and inner contraction. Lg
is a Lagrange form corresponding to the trivial Lagrangian £y = D, V# where

rp .
vk = ZZ(_I)H.' yﬁr-o-: ..... #pD#l.....m-i (a:i“ ..... Hlren #pb"c) .

p=1 1=1
So one has evidently
E(Ly(L)) = E(iyE(L)).

But the BulerLagrange operator E contains only the operators 84" and Dy (see
(2.9)) and one can check directly that both commute with £y when applied to L; so E
commutes with £y and the preceding relation implies

Ly(T) = E(iyT).

The ADK equations are nothing but the coefficients of J’ﬁ:.-.-.m in this equation.
== -
Suppose that the differential equation T verifies (locally) the equations (2.15). One
can choose the system of local coordinates such that 74 are regular functions in the point:
A w=0(=0,...,5). Then one defines the (local) Lagrangian:

o

1
L =f ¥AT4 0 xada (2.16)
0
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where

poXC N i N B € Rl /N €' e &

Then by direct computations one gets that Ty = (L), 0
Expression (2.16} is called the Tonti Lagrangian.

2.6,

One would like to show that the ADK equations have a global meaning, i.e. if in some chart
T4 vetifies (2.15), then 7} given by (2.3) verifies (2.15). Suppose that 7, verifies (2.15).
Then theorem 1 shows that T4 = £4(L) for some Lagrange form L. If we consider a
change of coordinates ¢ on § (see section 2.2} one can prove that

T = &(L) (2.17)

where L’ is the Lagrange form associated with the Lagrangian given by (2.11). We apply
again theorem 1 and obtain that 7, verifies again (2.15). Let us give an idea of the proof
of (2.17). An evolution is any section W : M — S of the bundle w ; 5 — M.

Let us denote by W : M — J3(S) the natural lift of ¥ and define the action functional
by

Ar(¥) = / (*L. (2.18)
The fundamental formula of the variational calculus is then
B AW = [()iE@) 2.19)

where X = X4 3 3,, is the infinitesimal variation. One computes this variation in two obvious
ways and discovers that £4(L) and £4(L’) are connected by a relation of the type (2.3).
From this the equation (2.17) follows immediately,

2.7.

Let us suppose that T is a differential equation and 7 : S M is a evolunon One says
that W is a solution of T if one has

(T =0. - (220

If T is locally variational T = E(L) one obtains the global form of the Euler~Lagrange
equations. In local coordinates one can arrange that W has the form x# + (x#, ¥(x));
then ¥ : M — J3(S) is given by

x* s (x“ lll(x), (x)v“’—_;mﬂ_ﬁ( ))

and (2.20) takes the well known form.

2.8

We now come to the notion of symmetry. By a symmetry of T we understand a map
¢ & Diff(5) such that if W : M — § is a solution of T, then ¢ o ¥ is a solution of T also.
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It is tempting to try to classify all possible symmetries associated with a given 7. In
general, this problem is too difficult to tackle, 'We will solve a2 particular case in the next
section. For the moment we content ourselves with noting that if ¢ verifies

@T=AT (A eRY (2.21)

(¢ € Diff(J:(S)) being the natural lift of $), then ¢ is a symmetry. For A = 1 these are the
so-called Noetherian symmetries, Indeed if T = E(L) one can recover the usual definition:

Arp(d o W) = AL (W) + a trivial action (2.22)

where by a trivial action we mean an action Ay, with Ly a trivial Lagrangian. Noetherian
symmetries are important because from (2.22) one can obtain conservation laws.

3. Second-order Euler-Lagrange equations

3.1

We particularize the ADK equations for case s = 2 of second-order Euler-Lagrange
equations. It is not hard to obtain the following set of equations:

I (1)
(a.umapzm + 3l ppe 4 aupsap:pz)n — (3.2)
O Ts + O Ty —2(am+wmac+wwa“‘)a‘““‘% @3
8aTs — 95T = — (B +¥C 8 + ¥, 0%) 8974 + (34 + ¥C 0 +¥E,,,8%)

x (aﬂ: + wﬂz dp + ﬂr[ﬂ-zvﬂag ) agmz-ﬂ_ (3.4

It is plausible to conjecture that from (3.1) and (3.2) it follows that 74 is a polynomial
in the second-order derivatives ‘ﬂf:w}- We have succeeded in proving this conjecture for the
case of the scalar field ¥ = 1.

3.2,

Let M ~ R" with coordinates (x*} w ="1,...,n and § C M x R with coordinates
(x*,¥). We can naturally imbed J*(S) in a Euclidean space with coordinates

H W Y - Vgt )
Then we have, from (2.1), (2.4) and (2.5),

T=Tdy ade! A+ Adx” (3.5}
f|!. ..r;! 0
gttt o 36)
I L TP
D, = gk +Z”‘f’[w ™ (3.7)
=0

The ADK equations (3.1)-(3.4) simplify considerably. In fact (3.1) is wivial, and (3.2)
and (3.3) become

ol R L L O LT U o (3.8)
and

a 1
9T = (-é;- + 0+ w{u,,]aﬂ) T 3.9)

respectively.
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Finally (3.4) is a consequence of (3.9). We will be able to prove that (3.8) is compatible
with a polynomial structure of T in the second-order derivatives ¥,.).

3.3.
Let us note that Tonti Lagrangian associated with T is (see (2.16))

i .
- [ vrona o0
)] R
with
Xk(x + ¥ Yy ‘!’{Jw}) = (x*, A, J"")’fﬂf A‘w{u nu})

The Euler-Lagrange equations for .£ are a priori of fourth order because the Lagranglan
is of second order (see (2.9)). It follows that there are some constraints on £; namely one
should require that the third- and fourth-order terms in the expression E(L) should be
identically zero. It is easy to prove that this condition amounts to

(BHPraMmP 4 guigMA . giPgim) £ = 0. (3.11)
More precisely we have

Lemma I. A second-order Lagrangian £ leads to second-order ‘Euler—Lagrange equations if
and only if it verifies the relation-(3.11). In this case we have

8 d
S(L) =0L- (m + 1!’;;3 * wmv!au) an£+ (axwl + 1”-"‘13 + w.{mv]}am)
]
X (a o + ¥, 8 + w[m}a”z) grik L, (3.12)
3.4.
We turn now to the study of the equations (3.8) (or (3.11)). Let us define the expressions:
1 . ] . .
Hlper BRIV e = 8'“1' .unsvl ----- k= 0, cou . 3.13
Up to a sign, y##ivi% jg the determinant of the matrix ¥(,,; with the lines
1, ..., thy and the columns vy, ..., v deleted. The combinatorial factor is chosen such
that
¥ = det(u). (3.14)

We prove now

Theorem 2. The general solution of the equations (3.8} is of the following form:

7= Z (k1)2 IIETETE L it (3.15)
where 7. are independent of {fry,,:

Ty, vy, =0 Vk=0,...,n) (3.16)
and have the same symmetry properties as - complete antisymmetry in fy, ..., i,

complete antisymmetry in vy, ...,V and symmetry with respect to the interchange:
Biseeos g <= V1,000, Ve
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Proof.

(i) One uses induction over n. For n = 2, equations (3.8) are simple to write and
one indeed obtains that the general sclution is of the form (3.15). We suppose that we
have the assertion of the theorem for a given » and we prove it for n + 1. In this

case the indices w,v,... take values (for notational convenience) w,v,... = 0,...,n
and i, j,...=1,...,n. If we consider in (3.8) that u, p1, 02,03 = 1,...,n then we can
apply the induction hypothesis and we get

T= Z (k‘)z Do i W R (3.17)

Here 7 has obvious symmetry properties and can depend on x, v, Yuand Ygy. The
minors Y~ are constructed from the matrix ;) according to the prescription (3.13).

(if) We still have at our disposal the relation (3.8) where at least one index takes the
value zero, We obtain rather easily that

2 —~
%Y 7T...iiii =0 Vk=0,...,n) (3.18)
3%8% T i =0 Wk =0,...,n) (3.19)
ama()mrj'Ej g = 0 (3.20)
2 Z ( 1)p+q (52:6}., + 5{]16;:) am’j:"]....,:';,,...i'k:_h....,f + 230130-’5»2' it 1, =0
pg=l
Vk=1,...,n) (3.21)

k
S St {eng 48O s n =0 (E=1.m).

@m,r) p.g=1
(3.22)

Here by Y., ,, Wwe understand the sum over all cyclic permutations of the indices
Lm,r.

It is a remarkable fact that these equations can be solved, i.e. one can descnbe the most
general solution.

From (3.18) we have

j-: L Y I(D) B e JE + !I’[DO} -.f&:j].----jk (k =0,..., n) (323)
with thc restrictions
90T L a=0 &=0,...,m1=0,1) (3.24)
From (3.19) and (3.20) we also get
OL7-(1} —
T i =0 - &=0,....n) (3.25)
3% 1) = 0. (3.26)
Finally (3.21) and (3.22) become
1 ! 00. O 0m7(0} _
2 Zl(ﬁl)pﬂ (3"“3 +9, a-f )3 7:( erbprenstis Jiyeesn S v +23 9 mg: ol J venes i =0
q—
Vk=1,...,n) (3.27)

Z Zk: (_I)P'Hl (3m3r _l_ar am) 30111:(0) it B =0 vk=1,...,n).

{d,m,r} pg=1
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(iii) Now the analysis can be pushed further if we apply the operator 3% to (3.27);
taking into account (3.24) we obtain
Or A0 nOm (03
armd T T s =0 ~VME=1,....n). (3.29)
Equations (3.26) and (3.29) can be used to obtain easily a polynomial structure in ¥rgy).
The details are elementary and one gets, from (3.26),

Tig =Tos+ Y Tog¥o (3.30)
!
with
3Ty = 0. (331)
Analogously, one establishes from (3.29) that

0) - = 1 1
ggf,---.fki.ih-...jk - z?.----lk:jl.---.fk + Z 7;1 st Flaeens i !”[un + 5 Z z:?--.ik:jx.-...jk w{(’f”bmm]
i im

(VE=1,...,n). , (3.32)
Here we have

T s =0 (k=0,...,n). (3.33)
We can also suppose that

q;ff’-i--.ft:flu-ujk =T i’ (3.34)
If we ingert (3.32) into (3.27) we get

rJ—Im L : ptg [ em el [ gm Tv(l)
S _5 1(_1) (a‘.f’&j? +6"i’ fq) i;,‘...,i:;,...:';.:j;,..._j,.....j;,' (3.35)
pg=

Finally, inserting (3.32) into (3.28) we get

3 Zk:(—l)ﬁﬂ(a;:s;ﬁafat“):f;’ . =0 (k=1,...,n (336

i Je Vyessnbpro st feses dgameendt
() pug=1 " ’

k
> et (e e TE L L =0 (Gk=lm. (3D)
(m,r) pg=1 A
. Let us summarize what we have obtained up until now. The solution of (3.18}-(3.22)
is given by (3.23) where 7O is given by (3.32) with 7' explicitated by (3.35) and 7
restricted by (3.36). One also has to keep in mind (3.31) and (3.33). We will show that
(3.35) identically verifies (3.37) so in fact we are left to solve only (3.36).

(iv) It is rather strange that equations of the type (3.36) and (3.37) can be analysed
using techniques characteristic to quanfum mechanics, namely the machinery of the Fock
space. In fact, let us consider the antisymmetric Fock space FEHRR; we define next the
Hilbert space H =-FO(R™) @ F<O(R™).

It is clear that the tensors Ty~ .. . can be viewed as elements of H also verifying

the symmetry property )

ST =T~ : : ' (3.38)
where

5@ Y)=v©¢ Vo, ¥ € FTRM). (3.39)
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Let us denote by agy and a*® (VI = 1,..., n) the annihilation and the creation operators
acting in F)(R™); then we have in H the operators
b*(D = a*(f) ®1 C*(i) =1® a®
and similarly for b¢y and ¢gy. In this notation (3.35)~(3.37) become
1

T.!m = _ﬁ [b*(l)c*(m) + b#(m)cne(!)] T(I) (340)
Z [b&(l) Hm 4 b*(m)c*(l)] Tr =0 (3.41)
{m,r)

Z [b"‘“) o*m 4 b*(m)c*(i)] T7s = 0. (3.42)

{m,r)

Now it is extremely easy to prove that (3.40) identically verifies (3.42) so, in fact, (3.35)
identically verifies (3.37) as we have announced above.
We concentrate now on (3.41). If we take ! = m = r we obtain

pOeri =0 (no summation over 1)
which easily implies that 7* must have the following structure:
T =p OB+ OC + PO p

with B, C and D obtained from the vacuum by applying polynomial operators in all creation
operators with the exception of #*® and ¢*®.
From (3.38) we obtain

C=3%B D=S8D
50, in fact, 77 is of the form
T =B+ 0sp (3.43)

with B’ arbitrary. Now it is easy to prove that (3.43) identically verifies (3.41) so it is the
most general solution of this equation.

Reverting to index notatmn, it follows that the most general solution of (3.36) is of the
form:

-1
u. b vndie Z(" > (81,, il yeenslpyeenis L vseen +3j,7;, eidp e dEiig e ) (3.44)

p=1
where 7;,, 4 jy....je 18 cOmpletely antisymmetric in iz, ..., and in ji, ..., j.
The structure of T, i:s....j i completely elucidated: it is given by (3.23) where 7©
is given by (3.30) and (3 32);in (3.32) 77 is given by (3.44) and 7™ by (3.35). Everythlng
depends on some arbitrary functions %.B and T which do not depend on ¥,

(v) It remains to introduce the expression for 7 in (3.17) and regroup the terms. If we
define:

Top = Irgﬂ
o1 it Oty = R+ 1)11?, i
7:3,...,:‘;;:1] e = 7:(”
Tosiznitsitrmnic = K B ronnds
then (3.17) goes into (3.15). [

okt ook
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3.5

We can insert the so]utlon (3.15) of (3.8) into (3.9) and obtain some restrictions on the
functions 7.
It is convenient to define
] 3 - -
TE = 9E + ¥,.8. (3.45)
Then we obtain

Z (—1)""-’ T, oy thi e eon SLES VL ey Up e Vi npy 8 e a3V s G
SxY Yi Sxt

ij=1

k
Z‘, =188 (T uersicriiiivr,omn) 88 (8% Tias sty
(k ,n—1) (3.46)
T ttiots = 5 Z(-—I)‘*J( "’"""“"’;’,’j:,‘”“
e g
p 3 eres L neoss o V] prees W yeres Vi
—[—ij o 7 ) . (3.47)

So we have

Theorem 3. The most general local variational second-order differential equation for a scalar
field is given by (3.15) where the functions 7_ have the structure decribed in the statement
of theorem 2 and also verify (3.46) and (3.47).

36

We concentrate now on the form of possible Lagrangians producing second-order differential
equations. According to section 3.3 such a Lagrangian can be taken to be of second order
and constrained by (3.11). Accordmg 1o theorem 2 this means that £ can be taken in the
form

‘C Z 2 f-'-:, B2 1 PO vﬂym‘"”mw' e (348)
= ("')
with £ independent of .
% Lyt = 0 (k=0,...,n} (3.49)

and with the same symmetry properties as 7_ .

Of course, it is possible that two different Lagrangians of the type (3.48) give the same
Euler-Lagrange operator. To investigate the extent of this arbitrariness we compute E(L).
Asg expected, we get something of the form (3.15):

- 1 L prans, YV praep V)
£<L)=;WT(L)M,,...,W,,._..u,;;r“- p (3.50)
where
T (LY 1 tigsvrnie = (1 — K+ l)aﬁm. BV s Ve '|' (3 Ly spiiim,.. )

)

8
+Z('—1); |i3 r ( ’.E’l‘#’h N T T Uk)+5 Vi (alﬂﬂl.---.ﬂk:lvh---,ﬁ ----- I&)]

i=1
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k 32£ N N
f+f (22T {3 S 1 TN 1) J
-+ § :(_I)H‘J 1 S : _a}-a;'CJ-..U'I-----ﬂ-k:f-”l.---.”k

53 SxHidx¥
*=0,...,n~2) (3.51)
4
T(L),u].....u,l_z;u,,....u,._.l = za‘cm.....#“_;;vl,....v,._; + 3_76_"’ (3'0[';14.....;L,,_l:vl.....v,._l)
n=1 . a N
+ Z(_‘ l)l[m (a f’l,m ,...,ﬁ,—,....pr..,_l:ul.....v,._;)
i=1 -
é A
+axw (a E#[.....,u,.-]:Ju.,vj....,l‘l\.',...,v,g..]
~1 2 . o
+ RE(—I)H‘ja ﬂm......u.-,....},L,,-l:vl,...,u,-,....v,._l ) (3‘52)

P SxHi§xti
L=l

8
T(L),u.l ..... L3 ¥lyeem¥n aL,u] ..... niVipestn Q (apﬁm,...,}x";vl,...,w)

z 1 I+ azﬁm.....ﬂ;,...,u,.:u;,.‘.,ﬁ}.....v_., 353
+2.6D Py : (353)

ij=l

We use in these equations the Bourbaki convention 3 4--- =0. So, £ given by (3.48)
leads to trivial Euler-Lagrange equations iff the expressions 7T(L),.. defined above are
identically zero.

3.7.

‘We are now prepared to investigate the most general expression of a symmetry for a second-
order local variational differential equation for a scalar field. We have:

Theorem 4. Let T a local variational differential equation for a scalar field and ¢ e Diff(S)
a symmetry. Then there exists p € F(J3(5)) such that

"o =0 , (3.54)
and

() T = pT. (3.55)

Proof. The condition that ¢ is 2 symmetry is that (2.20) should be equivalent to the same
equation with ¥ — ¢ o ¥ for any evolution ¥ : M = S. Because W is arbitrary one
obtains that

T=04($)'T=0.
Equivalently, if we define 77 by
(YT =T dyr AdxP A...A dx"
then we have
T=06T7T=0

One easily obtains from here, under some reasonable regularity conditions, that there
exists a function p & F(JJ(S5)) such that

T'=pT, (3.56)
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Because T and 7' are locally variational 7 and 7" have the polynomial structure given
by (3.15). So we have p = p/p’, where p and p are some polynomials in y¥r,,;. So,
(3.56) is

pT =p'T. (3.57)
We identify the terms of maximal degree in ¥y, in both sides and find
Proa T det() = Plogy T () < Proax = G0 P (3.58)

where oy = Tp.g /’1' We insert this in (3.57) and continue by recurrence. Finally one gets
p = Pg SO We have in fact (3.54). Moreover, it is clear that (3.56) is equivalent to (3.55).00

Remark 2. One can obtain some useful relations from (3.56) if we insert it into (3.46) and
(3.47) and take into account the fact that 7 verify these equations also. One obtains

i (op 8F o OF
Z( i+ ( Ao +6£, Bk )7;.:,.,....g.c".-,...,m;v;,....l‘r}....,uk

i, j=1
k __ aFf
= Z(—-l)l ! (Biﬁ.m.....ﬁ;....,m‘;ul....,w‘ -+ 3{;:Tm,...,m;l,v;,...,13',-,...,1:;;) ﬁ‘
i=1 A
k=1,...,n-1) (3.59)
o Tt 2( b+ (87,720 + 63%—) Tty (3-60)

: =1
These relations can be used to obtain some restrictions on the function f. For instance,

let us suppose that J—fy =0 and J— = 0. Then one obtains that either —L =0 (in this case
f is locally constant) or 7, ven es

3 0 (8 + 8 V0) Taimiom =0 =Ll G6D

=1
Remark 3. Theorem 2 is a sort of Lee-Hwa Chung theorem [9] for the Lagrangian formalism.

4. Lagrangian systems with groups of s:}mmetries

4.1

~ We will study two types of symmetry in this section. First, the case when the group of
symmetries is a Lie group (with a typical case the Poincaré invariance) and next the case
when the group of symmetries is infinite dimensional {with the typical case the universal
invariance).

4.2.

Let us consider a second-order locally variational equation with Poincaré invariance., (When
speaking of Poincaré invariance we will have in mind the proper orthochronous Poincaré
group, although there is no difficulty in treating the inversions with the same method.)

So, M from section 3.2 is the n-dimensional Minkowski space and for obvious reasons
the indices g, v, ... will take the values 0, 1, ..., n — 1; the Minkowski bilinear form G,
has the signature (1, —1, ..., —1). The action of the Poincaré groupon S =M xR is

¢L,a(-xa w) = (Lx + a, Ql;) (4'1)
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with L a Lorentz transformation and @ € R” a translation in the affine space M. The lift of
@1 to JA(S) is

QbL.a(x’ ¥, wpb’ w{pw}) =({Lx+a, ‘#: Lﬂv'#lh L;LpLDO-"#{pcr]) (42)
and the condition of Poincaré invariance is, by definition,
(Proy T=T (4.3)

(so we are considering only Noetherian symmetries).
The equation (4.3) is equivalent to

Todra=T. (4.4)
For L =1 one obtains the x-independence of 7

T

— =0 4.5

and from (4.4) we still have the Lorentz invariance of 7

T, LuP L Yripe) = T, Yo Yium)- (4.6)
If we insert (3.15) into (4.5) and (4.6) we get that the 7 are x-independent:

it _ 0 k=0,...,n) 4.7

Ix?

and also that 7, are Lorentz covariant tensors depending only on ¢ and v,,.
Using the usval method [8] of analysing the generic form of such a tensorial covariant
functions one obtains that 7 is a sum of expressions of the type

V... G GLAWT)

where J = {1, is a Lorentz invariant.

One now has to take into account the various symmetry properties of 7_ . First one
notices that one cannot have more than two factors ¢ becanse for three factors or more
one confradicts the antisymmetry in ug,..., g orfand in w,...,v. Because we also
have symmetry with respect to the change (i1, ..., mg) <+ (1, ..., ) it is clear that we
have two types of term: terms containing no ¥, factors and terms containing exactly two .
factors, more precisely of the form v, ¥,. Also, to avoid contradiction of the antisymmetry
the allowed factors G, are of the form G,,,.

Summing up, the most general Lorentz covariant tensor 7., respecting the symmetry
properties from the statement of theorem 2 is

q:lq ..... HEU ey Vg — AkIm,...,ug;u],...,w; + Bkjm..--.#k;vl.....vr (48)

Here A; and B, are smooth functions of 9 and J. We use the convention By = 0 and
we have defined

k
Lyoirn = 9 D Gy, =0,...,0) (4.9)

U'.TE'P[[ lllll k] i=]

k
J;.r.l.....uk;vl.....uk = Z (_I)IO—IH.E]"#M(]J %.m 1_[ Gﬁa(r‘}”r(l) (k = 0’ ey ") (410)

o, TEP...H =]

with the conventions Ipg =1, Jgg =0.
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One must insert (4.8) into the remaining ADK equations (3.46) and (3 47). The result
of this tedious computation is

8Ar—1 A 8

a'g& -2k W 2J——(n+k)Bk-0 (]c=1,....,n—1) (411)
By _ _ .
—aTb- Ck=1,...,n—2) ) (4.12)
8.Asx aA,,_ _
57 —pr==2 . 0 (4.13)

where we understand that for n = 2, (4.12) disappears. Inserting (4.8) into (3.15) it follows
that we have:

Theorem 3. The most general local variational second-order differential equation for a scalar
field baving Poincaré invariance in the sense (4.4} is of the form

n—1
T = Agdet(y) + ) (Aek + Bili) + Ay (4.14)
k=1
where I and J; are the Lorentz invariants: _
. .
L= (]‘[ Gp,iu,.)t,lr“”""“";”""""k (4.15)
i=]
and
&
'Ik = W,u; 1;”11] (1_[ G,uile‘r)w#hm,m;m,m'w" (4'16)
=2

Also the functions Ag, ..., Ax and By, ..., By_1 depend smoothly only on i and J
and verify the equations (4. 11)—(4 13). One can take Bi,..., B,_, arbitrary functions of
J and A,, B, arbitrary functions of ¢ and J. Then (4.11}44.13) can be used to fix
Ag, ..., Ap—1 up to an arbitrary function of J. The Tonti Lagrangian has the structure
(4.14) also.

43,

Let us now study the so-called universal invariance. Suppose F € Diff(R); then we define
or € Diff(5) by

br(x, ¥) = (x, F(¥)). : 4.17)
The natural lift of ¢r € Diff(S).to JZ(S) is ’
SrQ, U Yy Vi) = (%, FO), P F' )W) + FI () Yutn).  (418)
We say that the differential equation T has universal invariance if we have
@r)'T = prT. (4.19)

The function pr € Diff(J2(S)) does not depend on 1y, according to theorem 4 and it
is a cohomological object [10]. As in [10] we will consider only the case when

pr = (F))*. 4.20)
In this case (4.19) is equivalent to
T oy = (FHPIT, _ 4.21)
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Remark 4. According to remark 2, we have two cases: either p = 1 or we have (3.61).
We take F to be an infinitesimal diffeomorphism, i.e.
F(fy=v+0(4) (4.22)

with 6 infinitesimal but otherwise arbitrary and we can cast (4.21) into the infinitesimal
form; one obtains

87 =0 ’ (4.23)
Vo T + Y nd'T = (p — 1)T (4.24)
W, 9, 8*°T = 0. (4.25)

Let us note that (4.24) is the infinitesima! form of the homogeneity equation:
T(x, lwﬂr A—w(uu]) = AP—IT(x' ‘W;.u W[pw[) (¥a e R*)- (4.26)

If we insert in these equations the expression (3.15) we obtain, equivalently,
ag;nl,...,m;vj....,uk = 0 (k = O! rera n) {4.27)
Tt 06 M) = KPP 6 0) k=0,...,n) (4.28)

n

> Oy Tt =0 =1,,0). (4.29)

i, =1
Let us note that for p s 0, (4.29) follows from (3.61).
One must add to these equations (3.46) and (3.47) which, in our case, are

- i+if sp BTtttV e o 0 0T B398, o
E {-1) ) +4é
= Hi axY Yy Hxtu

k
= > U8, (BT eisisrtin)
i=l

+5f::' (BA%:,....M:LW----.13.'.---. mtk) ] k=1..,2-1) (4.30)
pT _ 1 r 1 o 3,0 aq;,tl,,..,;i;.....,u,.;vn,---.ﬁ,---.vu
a Mlpereiflns Haen bty = E IJZ=1(_ ) Hi , axuj
0T vt
+af; f-‘lhn--#‘h-é;l‘;;ul rees Uy eses U ) . - (4'31)

The system {4.27)-(4.31) seems to be too hard to solve in the general case. We content
ourselves with studying two particular cases.
(i) T is translational invariant, i.e.

aT
- = 4.32
aax = 0 “-32)
or
Ppnem _g g =0,...,m). (4.33)
ax*
For p = n + 1 one obtains the particular solution
T = Ty det(y) (.34)

with 7g.¢ constant. This is the solution appearing in [6].
(ii) It is clear that T follows from a first-order Lagrangian iff

?;L] ..... HR TV yeeas U = 0 (k = 0) LS ] n— 2)- (4'35)
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In this case:
T =To+ T Yoo} (4.36)
One easily obtains that (4.27)-(4.31) reduces to -
3T =0 {4.37)
3T =0 T (4.38)
To(x, Mp) = M To(x, ¥ (4.39)
TP (x, M) = AP 2T (x, ) (4.40)
YT =0 (4.41)
POTHY — grT = (4.42)
TP
9T = - (4.43)

This systemn was analysed in [10] where it was found that it has solutions for p = 0
and p=1.

5. Conclusions

The central formula obtained in this paper is (3.15). This expression affords a complete
treatement of local variational second-order differential equations with groups of symmetry,
It is plansible that (3.15) admits generalizations for the case N > 1 (i.e. fields with
more than one component) and for 5 > 2 (i.e. equations of arbitrary order). Maybe as a
first step one should try the more modest cases: N> 1, s =2 o N=1,5§>2.
These problems will be addressed in future publications.
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