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I. Phys. A Math. Gen. 28 (1995) 292-2937. Printed in the UK 

Variational equations and symmetries in the Lagrangian 
formalism 

D R Grigoret 
Department of Theoretical Physics. Institute of Atomic Physics, Bucharest-Magurele, PO Box 
MG 6. Romania 

Refeived 22 November 1994 

AbstraeL Symmetries in the Lagrangian formalism of arbitrary order are analysed with the help 
of the so-called Anderson-DuchampKrupka equations. For the case of second-order equations 
and a scalar field we establish a polynomial sbuehlre in the second-order derivatives. This 
smciure can be used to clarify the form of B general symmetry. As an illustration we analyse 
the case of Lagrangian equations with P o i n d  invariance or with universal invariance. 

1. Introduction 

The study of classical field theory in the framework of the Lagrangian formalism is still 
a subject of active research. For first-order Lagrangian systems one usually prefers the 
use of the Poincar6-Cartan form or related geometrical objects (see for instance [ 1,2]). For 
higher-order Lagrangian systems it is difticult to find aproper generalization of the Poincar.5- 
Cartan form with the same properties as the first-order case. It is particulary difficult to find 
such a generalization having a nice behaviour with respect to the (Noetherian) symmetries. 
A way out is to use a related formalism based on the Euler-Lagrange operator and its 
intrinsic characterization by Helmholtz equations. In fact, it was noticed sometimes ago 
that, in the case of second-order differential equations describing a system with a finite 
number of degrees of freedom, one can give necessary and sufficient conditions such that 
the equations follow from a Lagrangian: they are the so-called Helmholtz equations (see [31 
for a complete bibliography on this problem). Remarkably, this result can be extended to 
the general case of classical field theory and to equations of arbitrary order, leading to the 
so-called Anderson-Duchamp-hpka (ADK) equations [4,5], which seem to be less well 
known in the physics literature. The proper framework for this formalism is based on the 
jet-bundle structures. 

The purpose of this paper is to prove that this formalism based on the ADK equations 
can be used to treat higher-order Lagrangian systems with groups of symmetries completely. 

Section 2 has the purpose of presenting the formalism. For the sake of completeness 
we will also sketch the derivations of the ADK equations. Section 3 is dedicated to an 
extensive study of second-order Lagrangian equations. In the case of a scalar field one can 
practically ‘solve’ the ADK equations establishing a polynomial structure in the second-order 
derivatives. This central result greatly simplifies the study of (Noetherian) symmetries. 

In section 4 we impose, in addition, invariance with respect to some symmetry group. 
Combining this with the result from section 3 one can completely analyse some interesting 
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2922 D R Grigore 

symmetry groups such as the Poincar.5 invariance and the so-called universal invariance [6]. 
Section 5 is dedicated to some final comments. 

2. A higher-order Lagrangian formalism 

2.1. 

The kinematical structure of classical field theory is based on a fibred bundle structure 
?r : S H M where S and M are differentiable manifolds of dimensions dim(M) = 
n, dim@) = N + n and x is the canonical projection of the fibration. Usually M is 
interpreted as the ‘spacetime’ manifold and the fibres of S as the field variables. Next, one 
considers the k-jet bundle J i ( S )  H M (k = 0,. . . , p ) .  By convention Jf(S) E S and 
pENu{m].  

One must usually take p E N but sufficiently large such that all formulae make sense. 
Let us consider a local system of coordinates in the chart U & S : (x”) (p = 1. . . . , n). 

Then on some chart V 2 x-’(V) C S we take a local coordinate system adapted to 
the fibration structure: (x”,  @A) (p = 1,. . . , n,  A = 1,. . . , N) such that the canonical 
projection is x(x*, = (x’). 

Then one can extend this system of coordinates to J,k(S) for any k < p :  
A (~~.*~,+j,...,+~~ ,.._. ,,,J I G M  G . . . c L ~ < ~ .  

If p1, . . . , py are arbitrary, then by {PI, . . . , pk] we understand the operation of increasing 
ordering; then the notation *&,,,,,,pr, obviously makes sense. 

2.2. 

Let us consider s c p and T a (n + 1)-form which can be written in the local coordinates 
introduced above as 

T = A dx’ A ... A dd’ (2.1) 
A with 5 some smooth functions of (x”.  *A,  *:, . . . , e,, ,,,,,, *,). 

fibre bundle structure: 

W”, * A )  = ( f W >  F A @ ,  $1) 

Then T can be globally defined. Indeed, if we make a change of charts adapted to the 

(2.2) 
then in the new coordinates T has the same structure (2.1) as above. In fact, one immediately 
obtains 

where c$ is the lift of 4 to J i (S ) .  
We call such a T a differential equation of orders. 

2.3. 

To introduce some special type of differential equations we need some very useful notation 
[4]. We define the differential operators: 
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for any 1 = 0,. . . , k. Here ri is the number of times the index i appears in the 
sequence PI, .  . . , pi. The combinatorial factor in (2.4) avoids possible overcounting in 
the computations which will appear in the following. One then has 

and 

(1  # ,...,,I B = o  

Next, we define the total derivative operators: 

a? *"t,...,"m 

where by perm(A) we mean the permanent of the matrix A. 

One can check that 
A A 

D&*") ..... "I = *", ,..., " l ,  

ID,, DUI = 0. 
Finally we define the differential operators 

DM ,...,fit D p ,  . . . D M .  (2.8) 
Because of (2.7) the order of the factors on the right-hand side is irrelevant. 

2.4. 

A differential equation T is called locally variational (or of the Euler-Lagrange type) iff 
there exists a local real function L such that the functions TA from (2.1) are of the form: 

(2.9) &A(L) E C(-l)'DP ,,_._, P,(a~""'''L). 
IYJ 

One calls L a local Lagrangian and 
L E  L ~ X '  A ... d ~ "  (2.10) 

a local Lagrange form. Let us note that L can be globally defined if we admit that at the 
change of charts (2.2) L changes: 

(2.11) 

If the differential equation T is constructed as above then we denote it by E(L) .  A 
local Lagrangian is called a total divergence if it is of the f m :  

1: = D,V'. (2.12) 
One can check that in this case we have 

E ( L )  = 0. (2.13) 
This property follows easily from 

(2.14) 

The converse of this statement is true if one works on J F ( S )  (see [71). It is not known 
whether this is true on J [ ( S )  with p finite. A local Lagrangian verifying (2.13) is called 
" V i a l .  
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2.5. 

Now we come to the central result from [4 ,5] .  

Theorem 1. Let T be a differential equation of order s. Then T is locally variational iff the 
functions 7, from (2.1) verify the following equations: 

s 
a p - 3 . ~ 7 ~  = C(-i)Pcl D .l+l ..... ., ap- ’ ”F$  ( I  = 0, . . . , s). (2.15) 

P=I 

Remark 1. These are the so-called Anderson-Duchmp-Krup!a equations. For n = 1 and 
s = 2 one obtains the well known Helmholtz equations. 

Sketch of the prooJ 141 We remind the reader that we are working on J { ( S )  with p 
snf6ciently large. 

*: 
Suppose that 1: is a local Lagrangian depending on (x.. $ A ,  @:, . . . , @: ,,,,,, .,) with 

Then we must show that TA = EA(L) verify the ADK equations. The idea is as follows. 
2r 3 s. 

Let y A  ( A  = 1 ,  . . . , N) be some x-dependent functions and 

(vl = 0,. . . ,2r). 
- aryA 

A -  
Y . I . - ~  - ax.l ...a x.! 

We define (locally) the vector field Y by 
ZI 

y = y.4, aWl.-,Pr 
.-.PI A ‘ 

i=O 

One proves by direct computations that 

&(L) = i yE(L)  + Lo. 
Here .Cy and iy are the standard operations of Lie derivative and inner contxaction. LO 

is a Lagrange form corresponding to the hivial Lagrangian ,CO = D,V* where 

So one has evidently 

E(&(L)) = E(iYE(L)).  

But the Euler-Lagrange operator E contains only the operators a ~ ” ~ ” ” ‘  and Dw (see 
(2.9)) and one can check directly that both commute with Ly when applied to L; so E 
commutes with Ly and the preceding relation implies 

&(T) = E( iyT) .  
The ADK equations are nothiig but the coefficients of yi8,,,,,., in this equation. 
*: 
Suppose that the differential equation T verifies (locally) the equations (2.15). One 

can choose the system of local coordinates such that 7 A  are regular functions in the point: 
@w,....,.t A = 0 ( I  = 0, . . . , s). Then one defines the (local) La-pngian: 

(2.16) 
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where 
A X A ( ~ ” .  @A. 11;”. . . . ...., ”,) = (x”, A@:-,”. . . . A@@ ,..._. 

Then by direct computations one gets that TA = &(L). U 

Expression (2.16) is called the Tonti Lagrangian. 

2.6. 

One would l i e  to show that the ADK equations have a global meaning, i.e. if in some chart 
‘?A verifies (2.15), then Ti given by (2.3) verifies (2.15). Suppose that ‘TA verifies (2.15). 
Then theorem 1 shows that TA = &(L) for some Lagrange form L. If we consider a 
change of coordinates 4 on S (see section 2.2) one can prove that 

2-; = E(L‘) (2.17) 

where L‘ is the Lagrange form associated with the Lagrangian given by (2.11). We apply 
again theorem 1 and obtain that TA verifies again (2.15). Let us give an idea of the proof 
of (2.17). An evolution is any section Y : M + S of the bundle n : S H M .  

Let us denote by Y : M -+ J; (S )  the natural li of Y and define the action functional 
by 

&(Y) = (g)*L. (2.18) s 
s 

The fundamental formula of the variational calculus is then 

SXdL(Y) (g ) . ; ixE(L)  (2.19) 

where X XA+ is the infinitesimal variation. One computes this variation in two obvious 
ways and discovers that EA(L) and &(L‘) are connected by a relation of the type (2.3). 
From this the equation (2.17) follows immediately. 

2.7. 

Let us suppose that T is a differential equation and i~ : S H M is a evolution. One says 
that Y is a solution of T if one has 

(YYT = 0. (2.20) 

If T is locally variational T = E(L)  one obtains the global form of the Euler-Lugrange 
equations. In local coordinates one can arrange that Y has the form xfi H (x”. Y(x)); 
then @ : M + J;(S) is given by 

and (2.20) takes the well known form. 

2.8. 

We now come to the notion of symmetry. By a symmetry of T we understand a map 
4 E Diff(S) such that if Y : M + S is a solution of T ,  then $ o Y is a solution of T also. 
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It is tempting to try to classify all possible symmetries associated with a given T. In 
general, this problem is too difficult to tackle. We will solve a particular case in the next 
section. For the moment we content ourselves with noting that if @ verifies 

(4 E Diff(J,S(S)) being the natural lift of @), then @ is a symmetry. For A. = 1 these are the 
so-called Noetherian symmetries. Indeed if T = E ( L )  one can recover the usual definition: 

($)*T = AT (h E a') (2.21) 

d L ( @  o Y) = dL(Y) + a trivial action (2.22) 
where by a trivial action we mean an action Ab with Lo a trivial Lagrangian. Noetherian 
symmetries are important because from (2.22) one can obtain conservation laws. 

3. Second-order Euler-Lagrange equations 

3.1. 

We particularize the ADK equations for case s = 2 of second-order Euler-Lagrange 
equations. It is not hard to obtain the following set of equations: 

a?wiTB apTA (3.1) 

a p - i  + ap?k = 2 (aw2 + @Lac + @hut,a:) a?% 
aATB - aBz = - (awl + @;,ac + 

(apamm C + awmampl B C  + apa , !y)  z = 0 (3.2) 
(3.3) 

(3.4) 
It is plausible to conjecture that from (3.1) and (3.2) it follows that TA is a polynomial 

in the second-order derivatives @hvl. We have succeeded in proving this conjecture for the 
case of the scalar field N = 1. 

+ (aw, + @;,ac + 
U, a!AM 

(awz + @LaD + @&n13D) B 5. 

3.2. 

Let M 
( x P . @ ) .  

E%" with coordinates (xw) p =~ 1, . . . , n and S c M x E% with coordinates 
We can naturally imbed J,"(S) in a Euclidean space with coordinates 

w, @, @w> . . . * @w I..... d. 
Then we have, from (2.1). (2.4) and (2.5), 

The ADK equations (3.1)-(3.4) simplify considerably. In fact (3.1) is trivial, and(3.2) 

(3.8) 

and (3.3) become 
( a w a m ?  + awhahoi  + awhanh)T 

and 

respectively. 
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Finally (3.4) is a consequence of (3.9). We will be able to prove that (3.8) is compatible 
with a polynomial structure of T in the second-order derivatives @ I ( ~ " ) .  

3.3. 

Let us note that Tonti Lagrangian associated with T is (see (2.16)) 
1 

L=Jd @ T O x h a  (3.10) 

with 

XA(x'7 'k, @w @.(wvl) @'"? A@[@ "SI). 

The Euler-Lagrange equations for L are aprion' of fourth order because the Lagrangian 
is of second order (see (2.9)). It follows that there are some constraints on namely one 
should require that the third- and fourth-order terms in the expression E ( L )  should be 
identically zero. It is easy to prove that this condition amounts to 

(3.11) ( a ! m a p r m +  p p r a m m  + awmaPspr)L = 0, 

More precisely we have 

Lemma 1. A second-order Lagrangian 1: leads to second-order Euler-Lagrange equations if 
and only if it verifies the relation~(3.11). In this case we have 

(3.12) 

3.4. 

We turn now to the study of +e equations (3.8) (or (3.11)). Let us define the expressions: 

Up to a sign, @ ~ ' ~ - J " ' ~ " ' ~ - - " ~  is the determinant of the matrix @ [ p v ~  with the lines 
p1, . . . , /& and the columns V I ,  . . . , v k  deleted. The combinatorial factor is chosen such 
that 

@'.' = de t (h .~ ) .  (3.14) 

We prove now 

Theorem 2. The general solution of the equations (3.8) is of the following form: 

(3.15) 

where 1. are independent of @[(pv): 

ap% ,..... ,,..., = O  v k = O  ...., n) (3.16) 

and have the same symmetry properties as @-: complete antisymmetry in ~ 1 , .  . . , pk, 
complete antisymmetry in V I ,  . . . , Vk and symmetry with respect to the interchange: 
& I . .  t. 9 W k  -3 V I , .  . ., v k .  



2928 D R Grigore 

ProoJr 
(i) One uses induction over n. For n = 2, equations (3.8) are simple to write and 

one indeed obtains that the general solution is of the form (3.15). We suppose that we 
have the assertion of the theorem for a given n and we prove it for n + 1. In this 
case the indices p, U,. . . take values (for notational convenience) p,  U,. . . = 0,. . . , n 
and i ,  j ,  . . . = 1,. . . , n. If we consider in (3.8) that p ,  P I ,  pz, p3 = 1,. . . , n then we can 
apply the induction hypothesis and we get 

(3.17) 

Here i has obvious symmetry properties and can depend on x ,  *, *lorl. The 

(ii) We still have at our disposal the relation (3.8) where at least one index takes the 

(3.18) 

(3.19) 
(3.20) 

minors $.- are constructed from the~matrix @lijl according to the prescription (3.13). 

value zero. We obtain rather easily that 

(am)'%j ..__. i k : j l  ..... j b  -0  - 
a m a o f Z  .._.. ix:i ,..... jE  = o 
a 01 a O m -  7a0=o 

(Vk=O ,..., n) 
w k  = 0,. . . . n )  

(Vk = 1,. . . ,n) (3.21) 

Here by Co.,.?) we understand- the sum over all cyclic permutations of the indices 

It is a remarkable fact that these equations can be solved, i.e. one can describe the most 

From (3.18) we have 

I ,  m, r .  

general solution. 

3 ~ I v . J k : J I . - . l I  ' ' ' -?JCO) - 8 1  ,..., zk;Jt ' ' ,..., +*,m,%::,!,,ii:j ,,..., jl 
with the restrictions 

(k = 0, .  . .,n) (3.23) 

a"~?' . . . = O  ( k = o  ,..., n; I = o , I ) .  (3.24) 

a W 1 ) .  . . = o  (k = 0,.  . . , n )  (3.25) 

aolaOm$O) a0 - - 0 . (3.26) 

I! ..... B:lI .-.Jk 

From (3.19) and (3.20) we also get 

I I  ..-.C:ILIM..JI 

Finally (3.21) and (3.22) become 

( v k = l ,  ..., n) (3.27) 

(3.28) 
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(iii) Now the analysis can be pushed further if we apply the operator aor to (3.27); 

(3.29) 
Equations (3.26) and (3.29) can be used to obtain easily a polynomial structure in @loll. 

(3.30) 

taking into account (3.24) we obtain 

~ o ' a o i a o " ~ "  U. . 4 : h  ,.... J I  = O  (Vk= 1, ..., n). 

The details are elementary and one gets, from (3.26), 

QJ = q* + ~ % : 0 * 1 o l ,  
I 

with 
a O q - -  - 0  

0:0-  ' 

Analogously, one establishes from (3.29) that 

(Vk= 1, ..., n). 
Here we have 

a o p ~ ; ~ . . , t i ; j 3  ,_... jr = 0 

Tim . . . =I" . , . 

(k = 0, . . . , n). 

We can also suppose that 

II  ,.... U : J I  ,..., J L  I I  ..... 8 ~ 1 1  ..... j k  ' 

If we insert (3.32) into (3.27) we get 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

Finally, inserting (3.32) into (3.28) we get 

Let us summarize what we have obtained up until now. The solution of (3.18H3.22) 
is given by (3.23) where 7:') is given by (3.32) with 7:"' explicitated by (3.35) and 7:. 
restricted by (3.36). One also has to.keep in mind (3.31) and (3.33). We will show that 
(3.35) identically verifies (3.37) so in fact we are left to solve only (3.36). 

(iv) It is rather strange that equations of the type (3.36) and (3.37) can be analysed 
using techniques characteristic to quantum mechanics, namely the machinery of the Fock 
space. In fact, let us consider the antisymmetric Fock space F(-)(R"); we define next the 
Hilbert space 'H =~F[-l(Rn) @F(-)(R"). 

It is clear that the tensors T;;;.,,ih;j,,,,,,jt can be viewed as elements of 7f also verifying 
the symmetry property 

S F  = I.-. (3.38) 

(3.39) 
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Let us denote by a(!) and a*(') (Vl = 1, . . . , n) the annihilation and the creation operators 
acting in F(-)@"); then we have in 31 the operators 

b*(O ~ a*(') @ 1 c*(') ~ 1 *a*(') 

and similarly for b(j) and c(0. In this notation (3.35H3.37) become 

I (3.40) 
7 l m  = __ 1 [b*(OC*(m) + b*WC*(O 7(1) 

2k2 
(3.41) 

(3.42) 

Now it is extremely easy to prove that (3.40) identically verifies (3.42) so, in fact, (3.35) 

We concentrate now on (3.41). If we take E = m = r we obtain 
identically verifies (3.37) as we have announced above. 

b*(')c*(')I' = 0 (no summation over l ! )  

which easily implies that 7' must have the following structure: 
I' = b'(i)B + c*(')C + b'(')c*(')D 

with B ,  C and D obtained from the vacuum by applying polynomial operators in all creation 
operators with the exception of b*") and c*(I). 

From (3.38) we obtain 

C = S B  D = S D  

(3.43) 

with B' arbitrary. Now it is easy to prove that (3.43) identically verifies (3.41) so it is the 
most general solution of this equation. 

Reverting to index notation, it follows that the most general solution of (3.36) is of the 
form: 

where '& ,.._, tE;jt .._.. j, is completely antisymmebic in iz, . . . , ik and in j l ,  . . . , j k .  
The structure of ~L.....ji;j,....,j, is completely elucidated it is given by (3.23) where 'TAo) 

is given by (3.30) and (3.32); in (3.32) 7:. is given by (3.44) and 7:'' by (3.35). Everything 
depends on some arbitrary functions 3 y n  and 

(v) It remains to introduce the expression for i in (3.17) and regroup the terms. If we 
define: 

which do not depend on +(o~, .  

%;0 = $8 

.T,i, ...., ii;ojt ..... ji 
j E z(') 5, ,..., M, ..... L 

%.h ..... tL:jI ,.... j i  E k% ..... it:ji ..... it 
then (3.17) goes into (3.15). 

(k+ 1)q ,.._, ik;j! ,.._, jk  

I I,..., ik:ji ,._.. jk 

0 
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3.5. 

We can insert the solution (3.15) of (3.8) into (3.9) and obtain some restrictions on the 
functions 2.. 

It is convenient to define 
S a 

axp 
= tqpa. (3.45) 

Then we obtain 

k 
- - E(- I)'-' ,.... p; ...., ,,.... v k )  + 8; (3% ,,..., pb:A,v ,,_... ._._. v i ) ]  

i=l 
(k = 1,  ..., n - 1) (3.46) 

(3.47) 

So we have 
Theorem 3. The most general local variational second-order differential equation for a scalar 
field is given by (3.15) where the functions 'T., have the structure decnbed in the statement 
of theorem 2 and also verify (3.46) and (3.47). 

3.6. 

We concentrate now on the form of possible Lagrangians producing second-order differential 
equations. According to section 3.3 such a Lagrangian can be taken to be of second order 
and constrained by (3.11). According to theorem 2 this means that L can be taken in the 
form 

.".. Pi:", ,..., v i  " 1  

k=O 
(3.48) 

with L... independent of 

apace, ,,.. Ipk:y ,._... I* = o (k = 0, . . . .n) (3.49) 
and with the same symmetry properties as T.. 

Of course, it is possible that two different Lagrangians of the type (3.48) give the same 
Euler-Lagrange operator. To investigate the extent of this arbitrariness we compute E ( L ) .  
As expected, we get something of the form (3.15): 

(3.50) 
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(k = 0,. . . ,n - 2) (3.51) 
6 

BXP 
I(L) ,  ,...., ,,..., = 2aL, ,,..., ...., + - (apL,, ,.... ,”-,:” ,,.... ””-,) 

(3.52) 

(3.53) 

We use in these equations the Bourbaki convention E,. . . = 0. So, C given by (3.48) 
leads to trivial Euler-Lagrange equations if the expressions ‘T(L).,, defined above are 
identically zero. 

3.7. 

We are now prepared to investigate the most general expression of a symmetry for a second- 
order local variational differential equation for a scalar field. We have: 

Theorem 4. Let T a local variational differential equation for a scalar field and 4 E Diff(S) 
a symmetry. Then there exists p E F ( J i ( S ) )  such that 

aKUp = o (3.54) 

and 

($)* T = p T .  (3.55) 

Proof: The condition that 4 is a symmetry is that (2.20) should be equivalent to the same 
equation with Y H 4 o Y for any evolution Y : M H S. Because Y is arbitrary one 
obtains that 

T = 0 + ($)*T = 0. 

Equivalently, if we define 7‘ by 

($)*T =T’dl/r A dx’ A ... A dx” 
then we have 

T =  0 7’= 0. 

One easily obtains from here, under some reasonable regularity conditions, that there 

7’ = p 7. (3.56) 

exists a function p E F(Ji(S)) such that 
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Because T and T' are locally variational I and 7' have the polynomial structnre given 
by (3.15). So we have p = p / p ' ,  where p and p' are some polynomials in @ , p . ~ .  So, 
(3.56) is 

p l -  = p T .  (3.57) 

We identify the tems of maximal degree in in both sides and find 

pmaX%:0 W @ )  = pkaGiO W@r) pmar = PO P- (3.58) 

where po E 2&0/?;.;;~. We insert this in (3.57) and continue by recurrence. Finally one gets 
p = po so we have in fact (3.54). Moreover, it is clear that (3.56) is equivalent to (3.55).0 

Remark 2. One can obtain some useful relations from (3.56) if we insert it into (3.46) and 
(3.47) and take into account the fact that I verify these equations also. One obtains 

(k = 1, .. . ,n - 1) (3.59) 

These relations can be used to obtain some restrictions on the function f .  For instance, 
let us suppose that 3 = 0 and AL - 0 Then one obtains that either $ = 0 (in this case 
f is locally constant) or 7.. veriKs - ' 

Remark 3. Theorem 2 is a sort of LeeHwa Chung theorem [9] for the Lagrangian formalism. 

4. Lagrangian systems with groups of &metries 

4.1. 

We will study two types of symmetry in this section. First, the case when the group of 
symmetries is a Lie group (with a typical case the Poincark invariance) and next the case 
when the group of symmetries is infinite dimensional (with the typical case the universal 
invariance). 

4.2. 

Let us consider a second-order locally variational equation with PoincarC invariance. (When 
speakins of Poincark invariance we will have in mind the proper orthochronous PoincarC 
group, although there is no difficulty in treating the inversions with the same method.) 

So, M from section 3.2 is the n-dimensional Minkowski space and for dbvious reasons 
the indices p ,  U,. , . will take the values 0, 1,. . . , n - 1;  the Minkowski bilinear form G.. 
has the signature (1, -1, . . . , -1). The action of the PoincarC group on S M x 1 is 

4 ~ , &  @) =. ( L x  + a ,  $1 (4.1) 
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with L a Lorentz transformation and a E Rn a translation in the affine space M. The lift of 
(4.1) to J,“(S) is 

4L&, @, @p, @[.(p”,) = (Lx + a, @, LP”@”,  L,pL”‘@[,,)) 

and the condition of Poincark invariance is, by definition, 

(~L.=S T = T 

The equation (4.3) is equivalent to 
(so we are considering only Noetherian symmetries). 

‘TO = ‘T. 

For L = 1 one obtains the x-independence of F 

-= a‘T 0 
ax* 

and from (4.4) we still have the Lorentz invariance of I: 

‘TW, ~,p~”u@lIpul)  = 7 ( @ 9  @w @ I ! d  

a%, ..... m:w ..... I* 
axi  

If we insert (3.15) into (4.5) and (4.6) we get that the 2. are x-independent: 

= O  (k = 0 , .  . . ,n) 
and also that 7,. are Lorentz covariant tensors depending only on @ and @-,. 

functions one obtains that 1. is a sum of expressions of the type 
Using the usual method 181 of analysing the generic form of such a tensorial covariant 

@. . . . @.G.. . . . G..d(@., J )  

where J = @&@# is a Lorentz invariant. 
One now has to take into account the various symmetry properties of 2.. Fust one 

notices that one cannot have more than two factors @. because for three factors 01 more 
one contradicts the antisymmetry in p1,. . . , pk or/and in V I ,  ... , vk. Because we also 
have symmetry with respect to the change (PI,. . . , pk) cf ( V I , .  . . , vk) it is clear that we 
have two types of term: terms containing no *. factors and terms containing exactly two @. 
factors, more precisely of the form @pk@q. Also, to avoid contradiction of the antisymmetry 
the allowed factors G.. are. of the form Gphu,. 

Summing up, the most general Lorentz covariant tensor r,. respecting the symmetry 
properties from the statement of theorem 2 is 

(4.8) ‘& ._._, p ~ w  ,._., vh = d d p ,  ,_... pt;n ,_.., vb + BkJp, ..... p u t  ,..., v i .  

Here. and & are smooth functions of @ and 3. We use the convention = 0 and 
we have defined 

(4.9) 

with the conventions I*# 1, Jan 0. 
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One must insert (4.8) into the remaining ADK equations (3.46) and (3.47). The result 
of this tedious computation is 

a& 
a+ a J  aJ 
- - 2k- - 25- - (n + k)Bk = 0 (k = 1, . . . , - 1) 
aok 
a* - = O  (k = I , .  . . , n -2) 

(4.11) 

(4.12) 

(4.13) 

where we understand that for n = 2, (4.12) disappears. Insetting (4.8) into (3.15) it follows 
that we have: 

Theorem 5. The most general local variational second-order differential equation for a scalar 
field having Poincari invariance in the sense (4.4) is of the form 

I = Adet(*) f E ( d d k  + &Jk) + A n  (4.14) 
k=l 

where and Jk are the Lorentz invariants: 

and 

(4.15) 

(4.16) 

Also the functions A,. . . , A, and BI,  . . . , L 3 - 1  depend smoothly only on @ and J 
and verify the equations (4.1 lfi(4.13). One can take I31 , . . . , L3-2 arbitrary functions of 
J and A.. arbitrary functions of @ and J .  Then (4.11)-(4.13) can be used to fix 
A,. . . , A,-1 up to an arbitrary function of J .  The Tonti Lagrangian has the structure 
(4.14) also. 

4.3. 

Let us now study the so-called universal invarhce. Suppose F E Diff(R); then we define 
A= E D i f f W  by 

(4.17) $F(X, @) = (x ,  F(@)).  
The natural lift of @F E Diff(S)~to J:(S) is 

&(X, @. @g7 @I,”)) = (x.  F(@)9 F’(@C.)@,. F’(@)@[p”J + F”(@)h@”). (4.18) 
We say that the differential equation T has universal invariance if we have 

( ~ F ) * T  = PFT.  (4.19) 
The function pF E Diff(J:(S)) does not depend on @iPv) according to theorem 4 and it 

P F  = (F’)’. (4.20) 
is a cohomological object [lo]. As in [lo] we will consider only the case when 

In this case (4.19) is equivalent to 

Io $F (F’)’-’T. (4.21) 
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Remark 4. According to remark 2, we have two cases: either p = 1 or we have (3.61). 
We take F to be an infinitesimal diffeomorphism, i.e. 

w) = * + o w  (4.22) 
with 0 infinitesimal but otherwise arbitrary and we can cast (4.21) into the infinitesimal 
form; one obtains 

a i = o  (4.23) 
* P a v +  *p*vaPwI  = ( p  - i ) ~  (4.24) 
~ p * v a ~ y 7  = 0. (4.25) 

Let us note that (4.24) is the infinitesimal form of the homogeneity equation: 

I ( x ,  WI~VI) = AP-'7(X, @+. ?+"l) W E R*). (4.26) 
If we insert in these equations the expression (3.15) we obtain, equivalently, 

a% ,,.._, Pe:y ,.._., = o (k = 0, . . . , n) (4.27) 
%, ...., PGY, ,..., V ~ ( X ~ ) - @ P )  = A  t + p - l - n I  PI ,..., pk;v ,,..., ut(x,@J (4.28) 

x(-~Y+j@,,~+~~% ,...., I;, ,..., (4.29) 
i. j=1 

( k = O ,  ..., 4 
" 

,._... ci ..._. = 0 (k = 1, . . . , n). 

Let us note that for p # 0, (4.29) follows from (3.61). 
One must add to these equations (3.46) and (3.47) which, in our case, are 

. .  

+SE (aA% ,,..., ,.._., ..__, (k = 1, ..., n - 1) (4.30) 

(4.31) 

The system (4.27X4.31) seems to be too hard to solve in the general case. We content 

(i) T is translational invariant, i.e. 
ourselves with studying two particular cases. 

or 

a 7  
ax* 
- = o  (4.32) 

= O  ( k = O ,  ..., n). (4.33) a%, *..., Fk: "I ....* "k 

a d  

I = 5;0det(*) (4.34) 
For p = n + 1 one obtains the particular solution 

with 7& constant. This is the solution appearing in [6]. 
(ii) It is clear that T follows from a first-order Lagrangian iff 

,.._., ,._... = 0 (k = 0, . . . ,n - 2). (4.35) 
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In this case: 

7 = % + 7 P a * - ( p +  

az=o 
a7p '  = o 

One easily obtains that (4.27X4.31) reduces to 

%(x, A@,,) = AP%(x, rl;) 
Tp"(x. A$@) = Ap-z7p"(x, $,,) 
*p*oTp" = 0 
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(4.36) 

(4.37) 
(4.38) 
(4.39) 
(4.40) 
(4.41) 
(4.42) 

(4.43) 

This system was analysed in [lo] where it was found that it has solutions for p = 0 
a n d p = l .  

5. Conclusions 

The central formula obtained in this paper is (3.15). This expression affords a complete 
treatement of local variational second-order differential equations with groups of symmetry. 

It is plausible that (3.15) admits generalizations for the case N > 1 (i.e. fields with 
more than one component) and for s > 2 (i.e. equations of arbitrary order). Maybe as a 
first step one should try the more modest cases: N > 1, s = 2 or N = 1, s > 2. 

These problems will be addressed in future publications. 
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